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Figure 1. Left: For each task, one image and its mask from the training environment are provided to indicate task-relevant objects.
Additionally, we assign 3 extra points to each object. Right: In an unseen environment, point prompts are found by correspondence, after
which Segment Anything Model (SAM) produces high-quality masked images for visual RL agents.

Abstract
Learning policies that can generalize to unseen environ-

ments is a fundamental challenge in visual reinforcement
learning (RL). While most current methods focus on acquir-
ing robust visual representations through auxiliary supervi-
sion, pre-training, or data augmentation, the potential of
modern vision foundation models remains underleveraged.
In this work, we introduce Segment Anything Model for
Generalizable visual RL (SAM-G), a novel framework that
leverages the promptable segmentation ability of Segment
Anything Model (SAM) to enhance the generalization capa-
bilities of visual RL agents. We utilize image features from
DINOv2 and SAM to find correspondence as point prompts
to SAM, and then SAM produces high-quality masked im-
ages for agents directly. Evaluated across 8 DMControl
tasks and 3 Adroit tasks, SAM-G significantly improves the
visual generalization ability without altering the RL agents’
architecture but merely their observations. Notably, SAM-G
achieves 44% and 29% relative improvements on the chal-
lenging video hard setting on DMControl and Adroit re-
spectively, compared to state-of-the-art methods. Video and
code: yanjieze.com/SAM-G.

1. Introduction
Visual reinforcement learning (RL) has achieved great suc-
cess in various applications such as video games [15, 16],

robotic manipulation [20, 32, 33], and robotic locomo-
tion [25, 26]. Despite the progress, RL agents are known to
easily overfit when the training environments are not diverse
and thus face severe generalization problems [5, 34, 37].

To improve the generalization ability, recent works try to
acquire a visual representation that is robust to environment
changes, by using auxiliary loss functions [2, 10], data aug-
mentation [9, 11], and pre-training [30, 33]. In contrast,
humans exhibit a remarkable ability to perform complex
tasks in a variety of real-world scenarios, whether it is in
a kitchen, a factory, or the wild, without depending on such
specific designs. A plausible explanation could be our in-
nate understanding of object concepts [1]. We humans in-
tuitively identify and segment task-relevant objects in clut-
tered environments, which is yet to be seamlessly replicated
by RL-trained agents.

In this work, we equip RL agents with the capability to
identify and segment for generalization across unseen en-
vironments, by utilizing Segment Anything Model (SAM,
[14]), a segmentation foundation model that is promptable
to receive vision prompts, such as points, bounding boxes,
and languages, for user-given images. Our novel frame-
work, Segment Anything Model for Generalizable visual
RL (SAM-G), mainly consists of two parts: identify and
segment. We first harness image features from vision foun-
dation models, i.e., DINOv2 [17] and SAM, to extract task-
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Figure 2. Overview of SAM-G. (a) We provide only one image
and its mask from the training environment and use encoders of
vision foundation models, i.e., SAM [14] and DINOv2 [17], to
extract point features. (b) We determine point prompts by finding
correspondence in the test image and predict the mask with SAM.
(c) The masked images are directly used for visual RL agents.

relevant features from the training environment, termed as
point feature. Sparse points from human supervision are
additionally provided to extract point features, only once
for each task. Utilizing the point features, we compute
the similarity map and determine point prompts in the test
environment, which are then fed into SAM to accurately
segment the objects that are critical to the task at hand,
with iterative mask refinement. Moreover, SAM-G incor-
porates parameter-efficient finetuning techniques [36] for
rapid adaptation of the SAM model (only 10 seconds). Sub-
sequently, RL agents are directly fed with these high-quality
masked images in both training and generalization environ-
ments. An overview of SAM-G is provided in Figure 2.

We evaluate SAM-G across a variety of tasks and do-
mains, including 8 tasks from DeepMind Control Suite [21]
and 3 dexterous manipulation tasks from Adroit [18], total-
ing 11 tasks. We use the generalization benchmark from
DMC-GB [9] for DMControl tasks and RL-ViGen [31] for
Adroit tasks. Extensive experiments show that our simple
yet effective framework could significantly improve visual
generalization capabilities, especially for the challenging
video hard setting, where agents face dynamically chang-
ing backgrounds. Moreover, we note that SAM-G maintains
consistent performance across settings of varying difficulty,
in contrast to other baseline methods that exhibit significant
performance degradation in challenging generalization set-

tings. This observation aligns with our intuition, emphasiz-
ing the crucial importance of equipping agents with strong
segmentation capabilities for robust visual generalization.

2. Related Work

Visual generalization in reinforcement learning. Rein-
forcement learning (RL) agents are known to be facing se-
vere generalization issues [5, 11, 34, 37]. Contemporary
research seeks to improve the visual generalization capabil-
ities of RL agents [2, 9–11, 27, 30–32], with an emphasis
on visual representations. Hansen and Wang [9] propose to
decouple data augmentation from the policy learning pro-
cess, thereby reducing the instability that augmentation may
introduce during training. Hansen et al. [10] stabilize Q-
function learning with a two-stream architecture. Yuan et al.
[30] demonstrate the unexpected efficacy of utilizing an Im-
ageNet [6] pre-trained encoder as representations. Ze et al.
[32] pioneer the use of 3D pre-training for visual represen-
tations and facilitate a robust sim-to-real transfer. Bertoin
et al. [2] employ saliency maps derived from Q-functions to
guide agents in learning a mask. Yang et al. [27] tackle the
issue of view generalization by exploiting environment dy-
namics. Orthogonal to these, our work primarily focuses on
harnessing the segmentation foundation model to enhance
the generalization ability of RL agents. Our method could
be seamlessly incorporated into other algorithms.
Segment Anything Model (SAM, [14]) is a promptable
segmentation foundation model, trained on over 11 million
segmented images. It shows remarkable zero-shot segmen-
tation abilities and can reproduce task-relevant masks with
user-provided prompts, such as points, bounding boxes, and
sparse masks. While concurrent research [4, 19, 36] has ex-
plored the application of SAM for object localization and
tracking, our work diverges in two fundamental aspects: (1)
we only provide images and masks in the training environ-
ment, emphasizing generalization to any unseen environ-
ments; and (2) our objective is to enable agents to accom-
plish desired tasks, more than simple object tracking.
Removing redundant information for generalization. To
achieve generalization, our intuition is to remove the redun-
dant information across different scenes and only leave the
task-relevant objects. Such intuition is shared among this
work and several previous works [2, 8, 23, 29]. All these
works try to achieve generalization by learning a mask:
Wang et al. [23] utilize the keypoint detection and visual
attention for segmentation; Fu et al. [8] learn to recon-
struct foreground and background separately; Yuan et al.
[29] preserve the larger Lipschitz constant areas and per-
form augmentation on other areas. Compared to these
works, our method directly produces high-quality masks by
SAM, without the need for time-consuming training, auxil-
iary learning objectives, or specific architecture design.
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3. Preliminaries

Formulation. We model the problem as a Partially
Observable Markov Decision Process (POMDP) M =
⟨O,A, T ,R, γ⟩, where o ∈ O are high-dimensional obser-
vations (e.g., images), a ∈ A are actions, F : O ×A 7→ O
is a transition function, r ∈ R are rewards, and γ ∈ [0, 1)
is a discount factor. During training time, the agent’s goal
is to learn a policy π that maximizes discounted cumula-
tive rewards on M, i.e., maxEπ [

∑∞
t=0 γ

trt]. During test
time, the reward signal from the environment is not acces-
sible to agents and only observations are available. These
observations are possible to experience subtle changes such
as appearance changes and background changes.
Segment Anything Model (SAM, [14]) is a vision foun-
dation model designed for promptable image segmentation.
Trained on 11 million labeled images, SAM has shown a
notable zero-shot segmentation capability. It is particularly
adept at refining predicted masks through the integration of
user prompts, including sparse prompts like points, bound-
ing boxes, and languages, and dense prompts such as masks.
The promptable nature of SAM facilitates its application in
a variety of downstream tasks through prompt engineering
alone, such as edge detection and object detection.

The architecture of SAM is tripartite: it features a
ViT-based image encoder [7], a prompt encoder, and a
lightweight mask decoder. The image encoder processes
images of size 1024 × 1024 × 3 into image embeddings
with dimensions of 64 × 64 × 256. The prompt encoder
subsequently converts user prompts into corresponding em-
beddings, which the mask decoder then integrates with the
image embeddings to produce the segmentation mask log-
its. The mask is then generated by thresholding mask log-
its. Inference latency is primarily attributed to the image
encoder. In this work, we alleviate this issue by the usage
of EfficientViT [3].

4. Method

In this section, we introduce Segment Anything for Gen-
eralization (SAM-G), a framework that effectively utilizes
SAM to segment out the task-relevant objects and help
agents generalize to various scenes. SAM-G focuses on
addressing the visual generalization problem of RL agents.
Specifically, during the training phase, agents are exposed
solely to static training environments, where the visual ap-
pearance and backgrounds are not changing. However, at
test time, though the task objective does not change, the
agents encounter environments with significantly altered
visual properties, such as varied appearances and back-
grounds. Hence, the core principle of SAM-G is to cap-
ture the consistent elements between the training and testing
phases—namely, the object and the agent—while discount-
ing the elements that are not pertinent to the task.

An overview of SAM-G is given in Figure 2. SAM-G
mainly consists of two parts, identify and segment:
• Identify. Given only 1 image from the training environ-

ment and its mask, we extract point feature utilizing im-
age features from vision foundation models. The point
feature could be understood as the abstract of the task-
relevant objects.

• Segment. Utilizing the point feature obtained from the
training environment, we feed points found by correspon-
dence as sparse prompts into SAM and leverage SAM to
segment out task-relevant objects.

After images from environments are segmented by SAM,
RL agents directly process these segmented images as in-
put or into the replay buffer. SAM-G thus could be seam-
lessly incorporated into other visual RL algorithms. Details
of each part are illustrated in the following sections.

4.1. Identify

For each task, we provide only 1 image from the training
environment and its mask as additional information to help
SAM identify task-relevant objects.
Extract image features from foundation models. We
leverage the image encoder from DINOv2 [17] and
SAM [14] to extract image feature from the given image.
Notably, for fast inference speed, we use the Efficient ViT-
L1 [3] architecture for SAM. We use the ViT-B/14 architec-
ture for DINOv2.
Fetch point feature. We then fetch features that repre-
sent the task-relevant objects from image features, termed
as point feature. Two types of point feature are extracted, as
illustrated in Figure 5:
• Type 1 point feature is automatically computed based on

the masked image feature, using the average of the spatial
average pooled feature and spatial max pooled feature on
the masked image feature, termed as avg+max

2 .
• Type 2 point feature is fetched with human supervision.

We manually label 3 points for each object, termed as ex-
tra points, visualized in Figure 3. Then we directly get
the point feature in the corresponding coordinates.

Take a single-object task as an example. The stored point
feature has the dimension of 4× 768 and 4× 256, where 4
means one type 1 point feature and three type 2 point fea-
tures, and 768 and 256 are the feature dimension of DINOv2
and SAM respectively.

4.2. Segment

We now describe how to utilize the point feature to find
point prompts and segment out the task-relevant objects
with SAM. The segmentation process is the same for im-
ages from the training and generalization environments. An
illustration of the segmentation process is given in Figure 4.
Determining point prompts via correspondence. To seg-
ment a novel image, we commence by extracting its im-
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Figure 3. Visualization of extra points. We use a green marker to denote the extra points provided by humans. Each object is assigned
with 3 extra points. It is important to note that for each task, extra points are provided only once, and the resultant point features are stored.
Consequently, the time required for labeling these points can be considered negligible.
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Figure 4. Segmentation with point feature. We use point features from the training environment to find correspondence in the test image
and obtain point prompts. Then the mask decoder iteratively refines the predicted mask given point prompts.
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Figure 5. Fetch point feature. Given only 1 image in the training
environment and its mask, we fetch two types of point features.
Type 1 is computed as the average of the spatial average pooled
feature and spatial max pooled feature on the masked image fea-
ture; type 2 is directly fetched given human-defined points, termed
as extra points. Each object is assigned with 3 extra points.

age features using the encoders of SAM and DINOv2, the
same as before. Subsequently, we construct a similarity
map between these newly obtained image features and the
pre-established point features. For each point feature, we
average the similarity maps from two foundational models
to achieve better object localization. As shown in Figure 4,
the averaged similarity map distinctly highlights the target
object. For the similarity map corresponding to the type 1
point feature, we identify the point of highest similarity to
serve as a positive point prompt and the point of least simi-
larity as a negative point. In contrast, for the similarity map
constructed by the type 2 point feature, we solely select the
point of highest similarity as a positive point prompt. This
is because type 2 point features only represent information

from a specific part of the object, and the point of least sim-
ilarity could be mistakenly put on other parts of the object.
Features and similarity maps are visualized in Figure 6.
Mask prediction and refinement. After point prompts are
obtained and encoded into embeddings by the prompt en-
coder of SAM, the mask decoder decodes the image fea-
ture and the prompt embedding into mask logits [14]. We
further refine the prediction by repeating the mask decod-
ing process with additional prompts. Specifically, after the
1st mask prediction, we compute the bounding box of the
mask and select a point of least similarity in this box, based
on the similarity map we obtain previously. Then we per-
form the 2nd and 3rd mask prediction with old prompts and
newly added point prompts. Note that iterative mask refine-
ment has been used in previous works such as SAM [14],
PerSAM [36], and SAM-PT [19], while we propose to add
additional negative points based on the similarity map in
each refinement, to better separate the foreground and back-
ground in the generalization setting. The point prompts and
masked images are visualized in Figure 1.
One shot adaptation. Before RL agents start to loop in
the training environments, we fast adapt only two weights
in SAM with our initially provided image and mask, fol-
lowing PerSAM [36]. Specifically, SAM produces 3 mask
logits, denoted as M1,M2,M3, and conducts a weighted
summation,

M = w1 ·M1 + w2 ·M2 + (1− w1 − w2) ·M3 .

We use the provided image from the training environment
as input and its mask as the supervision to adjust the weights
w1 and w2. All other parts of SAM are frozen. This process
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Figure 6. Visualization of feature maps and similarity maps. We visualize image features from foundation models and similarity maps
that are used for finding correspondence. For image features, We employ Principal Component Analysis (PCA) to reduce the dimension of
image features into 3 and visualize them as RGB images. For similarity maps, areas highlighted in red indicate high similarity, while blue
regions represent the opposite. We only show two tasks from two domains here as the remaining tasks exhibit a similar pattern.

takes roughly 10 seconds on an Nvidia 3090 GPU, thus its
time consumption could be almost neglected.

5. Experiments
In this section, we evaluate the generalization ability
of SAM-G on 11 tasks, including 8 tasks from DM-
Control [21] and 3 dexterous manipulation tasks from
Adroit [18]. We use the generalization setting from DM-
Control Generalization Benchmark (DMC-GB, [9]), where
four settings are considered with increasing difficulty: color
easy, color hard, video easy, and video hard. Detailed de-
scriptions of tasks and generalization settings are in Ap-
pendix B. Videos are given in supplementary files.

5.1. Experiment Setup

Baselines. We benchmark SAM-G against the following
strong baselines: (1) DrQ-v2 [28] that applies random shift
as data augmentation; (2) VRL3 [22] that uses offline RL
to pre-train for sample efficiency; (3) SVEA [10] that sta-
bilizes the Q-function learning via an auxiliary loss; (4)
SGQN [2] that leverages the saliency map to help remove
redundant information; (5) PIE-G [30] that applies a pre-
trained image encoder as the representation. Among these
baselines, DrQ-v2 and VRL3 are designed for sample effi-

ciency and thus their generalization ability is limited; DrQ-
v2 and VRL3 serve as the backbone algorithms on DMCon-
trol tasks and VRL3 respectively. Other algorithms, includ-
ing SVEA, PIE-G, SGQN, and SAM-G, are designed for
visual generalization and built upon these backbone algo-
rithms.
Implementation. We implement SAM-G on top of DrQ-
v2, PIE-G (DrQ-v2 version), and PIE-G (VRL3 version), to
show that SAM-G could be incorporated into other visual
RL agents seamlessly. Visual observations are a stack of 3
RGB frames of size 84× 84× 3. Mean and standard devi-
ation of 3 random seeds are reported. For Adroit tasks, we
use the implementation from RL-ViGen [31] since DMC-
GB does not provide generalization settings on Adroit tasks.
Hyperparameters are given in the supplementary material.

5.2. Main Experiments

Considering the extensive scale of our experiments, we
present a summary of our main generalization results in Fig-
ure 7, across 2 domains and 4 settings. We then detail our
findings below.
DMControl. Detailed generalization results on 8 DMCon-
trol tasks are given in Table 1. We omit the color easy set-
ting since this setting is too easy for all methods on DMCon-
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Figure 7. Visual generalization results across 2 domains and 4 settings. Our method SAM-G could robustly improve the visual
generalization ability of visual RL agents such as DrQ-v2 [28] and PIE-G [30]. Notably, in the challenging video hard setting, SAM-G
surpasses previous state-of-the-art method PIE-G with 44% and 29% relative improvement on DMControl and Adroit respectively.

trol. Training curves of 4 tasks from DMControl are dis-
played in Figure 8, where all the algorithms achieve similar
sample efficiency and convergence. We could also observe
that SAM-G slightly reduces the variance during training.
Our observations are summarized as follows:

• Without specific design for generalization, the backbone
algorithm DrQ-v2 encounters difficulties in all general-
ization settings. Other generalization methods such as
SVEA and PIE-G exhibit robust performance in relatively
easy scenarios, such as color hard and video easy, but
exhibit significant performance drops in the more chal-
lenging video hard setting. This shows the limitations of
current visual reinforcement learning algorithms and un-
derscores the critical role of visual generalization.

• In contrast, SAM-G consistently delivers robust perfor-
mance across all settings. Notably, in the video hard set-
ting where other methods struggle, SAM-G achieves 770
average scores, largely surpassing PIE-G with 44% rel-
ative improvements. This verifies our intuition that the
robust generalization capacity could arise from the ro-
bust segmentation capacity. Leveraging the capabilities of
strong segmentation models such as SAM, agents should
be adept at handling challenging generalization scenarios.

Adroit. We present the generalization results for 3 Adroit
tasks in Table 2, spanning four challenging settings of in-
creasing difficulty. The training curves for the Adroit tasks
are displayed in Figure 8, where all algorithms exhibit sim-
ilar convergence patterns, except for SVEA. This ensures a
fair comparison in the generalization benchmark. Notably,
we observe that SAM-G significantly improves sample effi-
ciency on the Door task and does not hinder learning on the
other two tasks. Our observations regarding the generaliza-
tion results in Table 2 are summarized as follows:
• SAM-G demonstrates substantial performance enhance-

Table 1. Generalization results on DMControl. Mean and std
of 3 seeds are reported. Generalization settings are from DMC-
GB [9].

DMControl DrQ-v2 SVEA PIE-G DrQ-v2 PIE-G
(color hard) + SAM-G + SAM-G

Walker Walk 168±90 760±145 884±20 805±37 895±24

Walker Stand 413±61 942±26 960±15 839±80 971±4

Cartpole Swingup 277±80 837±23 749±46 728±15 751±57

Cheetah Run 109±45 273±23 369±53 280±48 349±28

Hopper Stand 383±41 715±78 681±72 659±7 706±55

Finger Spin 676±134 977±5 882±69 740±32 935±66

Ball in cup Catch 469±99 961±7 964±7 949±26 970±5

Quadruped Walk 162±40 879±8 822±8 893±19 759±44

Average 332 793 789 737 792

DMControl DrQ-v2 SVEA PIE-G DrQ-v2 PIE-G
(video easy) + SAM-G + SAM-G

Walker Walk 175±117 819±71 871±22 887±33 930±28

Walker Stand 560±48 961±8 957±12 839±80 970±7

Cartpole Swingup 267±41 782±27 587±61 855±7 710±90

Cheetah Run 64±22 249±20 287±20 282±49 345±8

Hopper Stand 261±62 678±30 514±51 971±2 715±71

Finger Spin 456±15 808±33 837±107 937±21 928±65

Ball in cup Catch 454±60 871±106 922±20 858±79 957±8

Quadruped Walk 681±29 818±6 805±14 916±14 789±72

Average 365 748 723 818 793

DMControl DrQ-v2 SVEA PIE-G DrQ-v2 PIE-G
(video hard) + SAM-G + SAM-G

Walker Walk 34±11 377±93 600±28 846±38 857±31

Walker Stand 151±13 834±46 852±56 966±2 964±4

Cartpole Swingup 130±3 393±45 401±21 747±5 653±58

Cheetah Run 23±5 105±37 154±17 283±46 327±11

Hopper Stand 5±5 221±13 235±17 840±30 618±63

Finger Spin 21±4 335±58 762±59 932±22 908±66

Ball in cup Catch 97±27 403±174 786±47 771±101 880±54

Quadruped Walk 69±21 532±23 483±62 774±22 635±21

Average 66 400 534 770 730

ments, notably surpassing the previous state-of-the-art al-
gorithm, PIE-G. This result is particularly significant be-
cause each Adroit task involves multiple objects, high-
lighting the generality of SAM-G for multi-object tasks,
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Table 2. Generalization results on Adroit. Mean and std
of 3 seeds are reported. Generalization settings are from RL-
ViGen [31].

Adroit VRL3 SVEA SGQN PIE-G PIE-G
(color easy) + SAM-G

Pen 1.7±0.7 53.3±7.6 71.3±5.0 76.0±7.0 79.0±4.4

Door 0.0±0.0 45.4±9.7 58.2±12.9 81.6±6.7 96.0±3.6

Hammer 0.0±0.0 24.0±15.6 75.0±8.6 45.8±19.3 88.0±9.3

Average 0.6 40.9 68.2 67.8 87.7

Adroit VRL3 SVEA SGQN PIE-G PIE-G
(color hard) + SAM-G

Pen 3.7±2.1 44.7±5.8 54.3±7.1 70.3±4.6 75.3±6.7

Door 0.0±0.0 11.8±3.6 31.4±9.8 67.8±9.8 90.3±4.2

Hammer 0.0±0.0 9.0±6.3 27.8±6.4 53.2±12.5 60.0±12.8

Average 1.2 21.8 37.8 63.8 75.2

Adroit VRL3 SVEA SGQN PIE-G PIE-G
(video easy) + SAM-G

Pen 1.7±0.6 46.7±3.8 68.7±8.1 76.0±1.7 82.3±5.1

Door 0.0±0.0 44.8±8.5 58.2±12.3 81.6±4.4 98.0±1.0

Hammer 0.0±0.0 8.4±8.6 61.0±9.4 50.4±21.2 83.3±7.0

Average 0.6 33.3 62.6 69.3 87.9

Adroit VRL3 SVEA SGQN PIE-G PIE-G
(video hard) + SAM-G

Pen 2.7±1.5 41.7±6.1 52.3±0.6 60.7±6.0 76.7±2.1

Door 0.0±0.0 7.6±1.8 21.6±6.4 60.4±12.3 88.3±3.1

Hammer 0.0±0.0 4.2±3.7 19.2±7.4 52.6±10.2 58.7±11.2

Average 0.9 17.8 31.0 57.9 74.6

extending beyond the simpler single-object tasks in DM-
Control.

• The performance of other baselines, including the previ-
ous state-of-the-art algorithm SVEA, is subpar. This once
again underscores the critical importance of robust visual
generalization.

5.3. Imitation Learning

Since SAM-G could be viewed as a general framework for
generalizable visuomotor policy learning, we conduct ini-
tial experiments that apply SAM-G for imitation learning
(IL) on challenging Adroit tasks.
Setup. We use the policy architecture of PIE-G [30]. We
collect 300 expert demonstrations for each task using RL
agents and train 80 epochs to ensure convergence. The
training objective is simply behavior cloning with a mean
squared error. We use Adam [13] optimizer with the learn-
ing rate 5× 10−5 and the batch size 256. The data augmen-
tation in PIE-G is also applied. Our baseline is the policy
part of PIE-G, which is called PIE-G as well in this section.
Results. As indicated in Table 3, our observations on Adroit
tasks remain consistent across both RL and IL settings.
In both cases, SAM-G outperforms PIE-G by a significant
margin on Door and Hammer tasks and achieves results that
are comparable to PIE-G on the Pen task. These preliminary

Table 3. Imitation learning and generalization results on
Adroit. Mean and std of 3 seeds are reported. Generalization
settings are the same as the RL experiments.

Imitation Train Color Color Video Video Average(Door) easy hard easy hard

PIE-G 93.0±3.6 85.7±2.3 62.5±16.5 78.7±7.5 61.0±8.5 76.2
SAM-G 96.7±3.5 97.0±3.0 91.3±8.1 96.3±0.6 88.3±1.5 93.9

Imitation Train Color Color Video Video Average(Hammer) easy hard easy hard

PIE-G 96.7±4.2 75.3±4.2 44.3±4.0 55.0±6.2 48.0±5.3 63.9
SAM-G 96.7±3.5 75.0±2.0 63.7±3.5 62.0±4.4 55.0±4.4 70.5

Imitation Train Color Color Video Video Average(Pen) easy hard easy hard

PIE-G 76.7±4.2 62.7±6.1 57.3±9.5 61.3±3.2 50.7±1.2 61.7
SAM-G 72.7±1.2 65.3±5.0 57.0±7.0 62.7±11.0 57.3±9.0 63.0

Table 4. Ablations on DMControl. Three main design choices
of SAM-G are ablated: using DINOv2 to extract image features;
adding extra points for more point features; and iterative mask re-
finement. We remove each component from SAM-G and observe
performance drops compared to full SAM-G.

DMControl Walker Cartpole Finger Ball in cup Average(color hard) Walk Swingup Spin Catch

SAM-G 805±37 728±51 739±32 949±26 805
w/o. DINOv2 726±39 589±75 785±90 921±10 755 (↓ 50)

w/o. extra points 761±64 649±78 783±34 929±17 781 (↓ 24)

w/o. refinement 708±73 790±123 617±27 935±15 763 (↓ 42)

w/o. PerSam adapt 659±93 501±28 833±136 894±91 722 (↓ 172)

DMControl Walker Cartpole Finger Ball in cup Average(video easy) Walk Swingup Spin Catch

SAM-G 887±33 855±6 937±21 858±79 884
w/o. DINOv2 871±13 611±82 949±15 706±59 784 (↓ 100)

w/o. extra points 843±55 659±58 930±24 885±18 829 (↓ 55)

w/o. refinement 834±136 791±39 680±24 923±18 807 (↓ 77)

w/o. PerSam adapt 817±35 469±75 939±42 911±56 784 (↓ 100)

DMControl Walker Cartpole Finger Ball in cup Average(video hard) Walk Swingup Spin Catch

SAM-G 870±28 747±5 932±22 771±101 830
w/o. DINOv2 782±27 307±61 862±22 404±97 589 (↓ 241)

w/o. extra points 805±41 491±45 688±11 847±53 708 (↓ 122)

w/o. refinement 819±140 717±75 591±18 883±29 753 (↓ 77)

w/o. PerSam adapt 803±26 336±107 919±22 802±112 715 (↓ 115)

experiments in IL highlight the potential of our framework
for visuomotor policy learning.

5.4. Ablations

To verify the necessity of designs in SAM-G, we conduct
a series of ablations on 4 DMControl tasks, including two
single-object tasks and two multi-object tasks. The quanti-
tative results are in Table 4. We conclude our observations
below. More ablations are in the supplementary material.
Usage of DINOv2. SAM-G leverages both the DINOv2 en-
coder and the SAM encoder to extract point features. This
design stems from our observation that combining image
features from two foundational models enhances the local-
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Figure 8. Training curves on Adroit and DMControl. Mean of 3 random seeds, shaded area is ±1 std. We observe that SAM-G (PIE-G
version) achieves better sample efficiency on Door and competitive results on Hammer and Pen compared to other strong baselines. On
DMControl, SAM-G (both DrQ-v2 version and PIE-G version) achieves compared efficiency to other strong baselines.This indicates that
applying masked images directly would not negatively impact the training performance.

ization capability of point features, as depicted in Figure 6.
Our quantitative evaluation results further underscore the
efficacy of incorporating DINOv2, particularly in the chal-
lenging video hard setting. Notably, when we exclude DI-
NOv2, the average performance of SAM-G drops signifi-
cantly, decreasing from 830 to 589.

Extra points. In addition to the automatically computed
point features, we also include coordinates provided by hu-
mans for direct extraction of point features from image fea-
tures, as detailed in Section 4.1. As illustrated in Table 4,
these extra points play a pivotal role in certain tasks, partic-
ularly in Cartpole Swingup. Without the inclusion of extra
points, the performance of SAM-G in the video hard setting
declines from 747 to 491. This observation underscores two
key insights: (1) the accurate identification of correspon-
dence is of paramount importance, and (2) the type 1 point
features may sometimes fail to provide precise correspon-
dence and our proposed extra points serve as a remedy to
mitigate this issue.

Mask refinement. Similar to extra points, we note the sig-
nificance of mask refinement particularly in specific tasks
such as Finger Spin. While mask refinement generally
helps, we have identified a nuanced scenario in the case of
Ball in cup Catch, where mask refinement appears to have
a slightly adverse effect. This could be possibly attributed
to the characteristics of this task: we observe that the cup
frequently moves to the corner of the image, where mask

refinement might be even hurtful in identifying such cases.
PerSAM loss. SAM-G adopts the efficient parameter fin-
tuning technique from PerSAM [36] which finetunes 2
learnable weights, for better adaptation to target tasks. We
ablate the necessity of the usage. As shown in Table 4,
we observe that the usage of this technique is helpful for
SAM-G. From our observation in experiments, this tech-
nique helps to find a better understanding of our target ob-
ject, reducing confusion about what foreground and back-
ground are.

0 5 10 15 20 25
Wall Time (seconds/100 steps)

DrQ-v2
SVEA

PIE-G
DrQ-v2+SAM-G (EfficientViT)

DrQ-v2+SAM-G (MobileSAM)
PIE-G+SAM-G (EfficientViT)
DrQ-v2+SAM-G (EfficientSAM)

DrQ-v2+SAM-G (ViT-B)
PIE-G+SAM-G (EfficientSAM)

PIE-G+SAM-G (ViT-B)

Figure 9. Wall time of different visual RL algorithms, tested on
an NVIDIA A800 GPU on Walker Walk task. The usage of Ef-
ficientViT largely improves the inference speed, while it is still
costly due to the usage of the large segmentation model.

Speedup inference by EfficientViT. The original ViT
model from SAM imposes a large computational overhead
when encoding images. To address this issue, we incorpo-
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Table 5. Ablation on different segmentation models. We replace
the EfficientViT [3] model in SAM-G with Mask-RCNN [12],
SAM (ViT-B) [14], and EfficientSAM [24] respectively.

Ablations Walker Cartpole Finger Ball in cup Average(color hard) walk swingup spin catch

EfficientViT 805±37 728±51 739±32 949±26 805
Mask-RCNN 566±124 318±294 487±79 448±163 455
SAM (ViT-B) 718±17 642±17 752±44 887±14 750
EfficientSAM 865±9 767±31 896±17 951±18 870
MobileSAM 906±22 582±156 844±83 617±128 737

DMControl Walker Cartpole Finger Ball in cup Average(video easy) Walk Swingup Spin Catch

EfficientViT 887±33 855±6 937±21 858±79 884
Mask-RCNN 650±161 257±60 482±29 536±48 481
SAM (ViT-B) 820±27 624±8 940±34 966±5 838
EfficientSAM 869±25 824±10 959±18 951±16 901
MobileSAM 883±67 650±105 932±30 790±81 814

DMControl Walker Cartpole Finger Ball in cup Average(video hard) Walk Swingup Spin Catch

EfficientViT 870±28 747±5 932±22 771±101 830
Mask-RCNN 62±20 150±30 37±5 100±41 87
SAM (ViT-B) 735±10 517±21 896±35 927±2 769
EfficientSAM 872±5 732±33 862±15 901±35 842
MobileSAM 867±57 543±95 858±24 534±84 701

rate the EfficientViT [3] architecture. We test the wall time
of several visual RL algorithms for comparison, as shown
in Figure 9. It is observed that the adoption of the Effi-
cientViT architecture has made our method more practical,
while SAM-G still exhibits a longer wall time when com-
pared to PIE-G and SVEA. We hope that this overhead can
be mitigated in the future through further advancements in
model architecture and system optimization.
Different segmentation models. One key design of SAM-
G is to apply SAM, the most powerful segmentation foun-
dation model as far as we know. We have also tried other
segmentation models for comparison, including a Mask R-
CNN [12] pre-trained on COCO, a ViT-B version of orig-
inal SAM, EfficientSAM [24], and MobileSAM [35]. Ef-
ficientSAM and MobileSAM are two distilled versions of
SAM for faster inference. We use the EfficientSAM-S
model.

As shown in Table 5, SAM-G that leverages an Efficient-
ViT version of SAM largely surpasses that with Mask-
RCNN. This is not surprising since Mask-RCNN can not
make competitive segmentation results compared to SAM,
as visualized in Figure 10. We also observe that the origi-
nal SAM (ViT-B) works slightly worse than SAM-G, since
SAM-G is using the Efficient ViT-L1 model, which is dis-
tilled from the more accurate ViT-H SAM model. Effi-
cientSAM is also trained to distill the ViT-H model in SAM
and it gets an even better result than SAM-G, while due to
its larger wall time (see Figure 9), we apply EfficientViT in
SAM-G. MobileSAM achieves similar wall time but is less

Input Mask-RCNN SAM

Figure 10. Visualization of segmentation from Mask-RCNN
and SAM for comparison. Mask-RCNN only roughly detects
the object in the center, while SAM produces high-quality fine-
grained masks.

accurate, compared to EfficientViT.

6. Conclusion
In this work, we introduce Segment Anything Model for
Generalizable visual RL (SAM-G), a framework that har-
nesses vision foundation models to find correspondence and
subsequently leverages Segment Anything Model (SAM)
to segment out task-relevant objects for the benefit of vi-
sual reinforcement learning (RL) agents. The high-quality
masked images produced by SAM are directly utilized by
agents. We conduct evaluations of SAM-G on the gener-
alization benchmark of 11 visual RL tasks and observe the
robust generalization capabilities of SAM-G across settings
of varying difficulty. Notably, in the most challenging set-
ting, video hard, we achieve relative improvements of 44%
and 29% across two domains when compared to the state-
of-the-art method. Our work highlights the significance of
leveraging vision foundation models for enhancing general-
ization in decision-making.

One limitation of our work is the extended wall time
when employing SAM. To mitigate this issue, we have in-
corporated EfficientViT in this work, and we anticipate that
future advancements in machine learning systems and ar-
chitectures will further address this challenge.
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Generalizable Visual Reinforcement Learning with Segment Anything Model

Supplementary Material

A. Implementation Details

In this section, we describe more implementation details
of SAM-G, mainly describing how to obtain embeddings,
point features, and SAM prompts. An overview of SAM-G
has been shown in Figure 2. Our official implementation
is available at https://github.com/wadiuvatzy/
SAM-G.
Obtain feature embeddings. To get the point prompts, we
first extract feature embeddings from the visual encoder of
SAM and DINOv2, and the resulting embedding is used to
compute the similarity map. Taking the image observation
of size 84×84×3 as input, the encoder of SAM resizes the
image into 1024 × 1024 × 3 and obtains an embedding of
size 64×64×256. Similarly, the encoder of DINOv2 resizes
the image into 448× 448× 3 and obtains an embedding of
size 32 × 32 × 768. The DINOv2 embedding is resized to
64× 64× 768 for alignment.
Obtain point features. Given a pair of image and its mask
from the training environment, we obtain 2 types of target
point feature as shown in Figure 5. Type 1 point features
are computed on the masked embeddings using spatial av-
erage and max operations. Type 2 point features are fetched
directly from original embeddings coordinated by human-
given points. We observe that type 2 point features are more
necessary for multi-object scenarios and confusing back-
grounds, and for easier settings, type 2 point features are
shown to be not very necessary.
Prompt for segmentation. Once we prepare the point fea-
tures, we are ready to segment images. Take the case with
1 type 1 point feature and 3 type 2 point features as an ex-
ample. For an image we want to segment, we first get the
feature embeddings through the method discussed above.
And then we will use mask decoder of SAM 3 times to get
the final segmentation result.
• 1st segmentation. for each point feature, calculating the
normalized inner product with the feature embedding gives
us two 64× 64 similarity maps (one from SAM feature and
the other from DINOv2 feature). By taking the mean of
each pair of two similarity maps, we get 4 final similarity
maps: one from type 1 point feature and three from type
2 point feature. All the 4 similarity maps give us a posi-
tive point prompt by finding the maxima in each map, while
only the similarity map from type 1 point feature gets the
minima as a negative point prompt. We do not use type 2
similarity map to get negative point prompts because type
2 point feature only contains local information, the minima
may lie on another object we want. Feeding those 5 point
prompts together with the feature embedding got before to

mask decoder of SAM is the final step to get the first result.
• 2nd and 3rd segmentation. After the first segmentation,
we can get 3 masks (multimask return by SAM) together
with their mask logits. Conducting a weighted summation
of those mask logits with our trained 3 weights gives us a
rough mask whose bounding box is also easily got. We can
find the minima of type 1 similarity map inside the box and
take that as another negative point prompt (may be the same
point as the previous negative prompt). Further we will feed
those 6 point prompts together with the box, the logits into
mask decoder of SAM to get the 2nd result. For the last time
of segmentation, repeating similar process in 2nd segmen-
tation, we can get a bounding box of a rough mask, a mask
logits and another negative prompt. Once again, feeding 7
point prompt, 1 box and 1 mask logits to the mask decoder
of SAM gives out 3 masks. We choose the one with highest
score (given by SAM) as our final segmentation result.

B. Descriptions of Tasks

Our generalization setting follows [9, 31], where the color
setting changes the background, object color and table tex-
ture, while the video setting changes the background to a
natural video and introduces moving light. Compared with
color easy setting, color hard setting presents a higher level
of randomness and complexity, with more varied and un-
predictable visual features. Similarly, video easy setting has
simpler video background dynamics, while video hard set-
ting consists of intricate and swiftly alternating video back-
grounds which are substantially dissimilar to the training
setting.

We describe the tasks used in this work as follows,
mainly from DMControl [21] and Adroit [18].

• Walker, walk (a ∈ R6). A planar walker that is rewarded
for walking forward successfully at a set speed. Dense
rewards.

• Walker, stand (a ∈ R6). A planar walker that is rewarded
for maintaining a vertical position and a steady height
above a specified minimum. Dense rewards.

• Cartpole, swingup(a ∈ R). Swing up and stabilize a free-
standing rod by exerting forces on a cart at the foundation.
The agent is rewarded for keeping the rod aligned within
a set angular limit. Dense rewards. Dense rewards.

• Cheetah, run (a ∈ R6). A planar cheetah model that is
rewarded for sprinting forward rapidly, with the objective
of achieving and maintaining a high velocity. Dense re-
wards.

• Hopper, stand (a ∈ R4). A one-legged planar hopper
that is rewarded for achieving and maintaining an upright
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Table 6. Hyperparameters for SAM-G.

Hyperparameter DMControl-GB Adroit

Input size 84 × 84 84 × 84 (door, hammer), 160×160 (pen)
Discount factor γ 0.99 0.99
Action repeat 2 2
Frame stack 3 3
Learning rate 1e-3 1e-4
Random shifting padding 4 4
Episode length 1000 200 (door, hammer), 100 (pen)
Evaluation episodes 100 100
Batch size 128 256
Replay buffer size 5e5 1e6
Optimizer Adam Adam

position, with its torso held vertically to a minimal height.
Dense rewards.

• Finger, spin (a ∈ R2). A planar robotic finger that is
rewarded for spinning a body affixed to a surface, with
the objective of achieving and maintaining a continuous
rotational velocity. Dense rewards.

• Ball in cup, catch (a ∈ R2). A motorized planar con-
tainer that is rewarded for oscillating and catching a ball
tethered to its base by a string. Sparse rewards.

• Quadruped, walk (a ∈ R12). A four-legged robotic en-
tity that is rewarded for ambulating forward, aiming to
achieve a targeted gait and speed. Dense rewards.

• Door (a ∈ R28). The task to be completed consists on
unlocking the door and swing the door. The task is con-
sidered complete when the door touches the door stopper.
Sparse rewards.

• Pen (a ∈ R24). The task to be completed consists on
repositioning the blue pen to match the orientation at the
green target pen which is randomly chosen from all con-
figurations. The task is considered complete when the
orientations match with some tolerance. Sparse rewards.

• Hammer (a ∈ R26). The task to be completed consists
on picking up a hammer and drive a randomly positioned
nail into a board. The task is considered complete when
the neil is entirely in the board. Sparse rewards.

C. Hyperparameters
Our algorithms are mainly based on DrQ-v2 and PIE-G and
most of the training hyperparameters are the same. Table 6
shows detailed hyperparameters. Task-relevant parameters
are in Table 7.

D. More Ablations
D.1. Higher Resolution for Pen

In Table 2, we mentioned that SAM-G falls short of per-
formance in the Pen task in 84 × 84 resolution. The de-
tailed evalation result can be found in Table 8. We postu-
late that the unsatisfying performance of SAM-G in the Pen
task may be attributed to the low image resolution. In the
Pen task, the dexterous hand must execute precise manip-

Table 7. Task parameters for DMControl and Adroit tasks.

Task Action Dim Action Repeat # Objects # Extra points # Frames

Walker Walk 6 2 1 3 1M
Walker Stand 6 2 1 3 1M
Cartpole Swingup 1 2 1 3 1M
Ball in cup Catch 2 2 2 6 1M
Hopper Stand 4 2 1 3 1M
Finger Spin 2 2 1 3 1M
Cheetah Run 6 2 1 3 3M
Quadruped Walk 12 2 1 3 3M

Door 28 2 2 6 1M
Hammer 26 2 3 9 1M
Pen 24 2 2 6 2M
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Figure 11. Training curves in different resolution in Pen. Mean
of 3 random seeds, shaded area is ±1 std. Training in 160 × 160
input get better performance than training in 84× 84 for SAM-G.

(a) 84× 84 (b) 160× 160

Figure 12. Visualization of segmentation under different reso-
lutions. SAM segments more accurately under a higher resolution.
Table 8. The low resolution result for pen. All the resolution of
the visual observation are 84× 84.

Pen Color Color Video Video Averagehigh resolution easy hard easy hard

VRL3 0.1±0.0 0.1±0.0 0.0±0.0 3.6±0.9 1.0
SVEA 55.0±8.6 47.0±6.8 50.2±8.6 46.8±9.7 49.8
SGQN 51.4±18.1 36.8±13.7 51.4±18.1 54.0±3.7 48.4
PIE-G 70.6±2.9 57.4±4.2 67.0±8.8 56.6±6.3 62.9
SAM-G 60.0±12.8 53.0±5.0 61.3±9.3 55.3±4.2 57.4

ulation, and the challenges in segmenting objects become
pronounced in low-resolution images. To substantiate our
hypothesis and enhance SAM-G’ performance, we increase
the input image resolution from 84 × 84 to 160 × 160 for
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improved segmentation. The training progress is shown in
Figure 11, and the final corresponding evaluation results are
presented in Table 2. We also compare the segmentation re-
sults in Figure 12.

Notably, the success rate in the train setting has sub-
stantially improved, rising from 69% in the low-resolution
setting to an impressive 82% in the high-resolution set-
ting. Moreover, with the adoption of this higher resolution,
SAM-G has now significantly outperformed all other base-
lines, providing strong validation for our initial hypothesis.

3


